Ford-Fulkerson Algorithm
Algorithm Description
The Ford-Fulkerson algorithm is used to find the maximum flow in a flow network. It is based on the concept of augmenting paths, where paths with available capacity are repeatedly found from source to sink until no more augmenting paths exist.
C++ Code
#include <iostream>
#include <vector>
#include <queue>
#include <cstring>
using namespace std;
#define V 6
bool dfs(int rGraph[V][V], int s, int t, int parent[]) {
bool visited[V];
memset(visited, 0, sizeof(visited));
queue<int> q;
q.push(s);
visited[s] = true;
parent[s] = -1;
while (!q.empty()) {
int u = q.front();
q.pop();
for (int v = 0; v < V; v++) {
if (visited[v] == false && rGraph[u][v] > 0) {
if (v == t) {
parent[v] = u;
return true;
}
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
return false;
}
int fordFulkerson(int graph[V][V], int s, int t) {
int u, v;
int rGraph[V][V];
for (u = 0; u < V; u++)
for (v = 0; v < V; v++)
rGraph[u][v] = graph[u][v];
int parent[V];
int max_flow = 0;
while (dfs(rGraph, s, t, parent)) {
int path_flow = INT_MAX;
for (v = t; v != s; v = parent[v]) {
u = parent[v];
path_flow = min(path_flow, rGraph[u][v]);
}
for (v = t; v != s; v = parent[v]) {
u = parent[v];
rGraph[u][v] -= path_flow;
rGraph[v][u] += path_flow;
}
max_flow += path_flow;
}
return max_flow;
}
int main() {
int graph[V][V] = { {0, 16, 13, 0, 0, 0},
{0, 0, 10, 12, 0, 0},
{0, 4, 0, 0, 14, 0},
{0, 0, 9, 0, 0, 20},
{0, 0, 0, 7, 0, 4},
{0, 0, 0, 0, 0, 0}
};
cout << "The maximum possible flow is " << fordFulkerson(graph, 0, 5);
return 0;
}
Time and Space Complexity
Operation | Time Complexity | Space Complexity |
---|---|---|
Initialization | O(V^2) | O(V^2) |
Ford-Fulkerson | O(E * max_flow) | O(V^2) |
Where:
- V: Number of vertices in the graph.
- E: Number of edges in the graph.